Beyond Worst-case: A Probabilistic Analysis of Affine Policies in Dynamic Optimization
نویسندگان
چکیده
Affine policies (or control) are widely used as a solution approach in dynamic optimization where computing an optimal adjustable solution is usually intractable. While the worst case performance of affine policies can be significantly bad, the empirical performance is observed to be near-optimal for a large class of problem instances. For instance, in the two-stage dynamic robust optimization problem with linear covering constraints and uncertain right hand side, the worst-case approximation bound for affine policies is O( √ m) that is also tight (see Bertsimas and Goyal [8]), whereas observed empirical performance is near-optimal. In this paper, we aim to address this stark-contrast between the worst-case and the empirical performance of affine policies. In particular, we show that affine policies give a good approximation for the two-stage adjustable robust optimization problem with high probability on random instances where the constraint coefficients are generated i.i.d. from a large class of distributions; thereby, providing a theoretical justification of the observed empirical performance. On the other hand, we also present a distribution such that the performance bound for affine policies on instances generated according to that distribution is Ω( √ m) with high probability; however, the constraint coefficients are not i.i.d.. This demonstrates that the empirical performance of affine policies can depend on the generative model for instances.
منابع مشابه
A Tractable Approach for designing Piecewise Affine Policies in Dynamic Robust Optimization
We consider the problem of designing piecewise affine policies for two-stage adjustable robust linear optimization problems under right hand side uncertainty. It is well known that a piecewise affine policy is optimal although the number of pieces can be exponentially large. A significant challenge in designing a practical piecewise affine policy is constructing good pieces of the uncertainty s...
متن کاملOn the power and limitations of affine policies in two-stage adaptive optimization
We consider a two-stage adaptive linear optimization problem under right hand side uncertainty with a min–max objective and give a sharp characterization of the power and limitations of affine policies (where the second stage solution is an affine function of the right hand side uncertainty). In particular, we show that the worst-case cost of an optimal affine policy can be (m1/2−δ) times the w...
متن کاملA Tractable Approach for designing Piecewise Affine Policies in Two-stage Adjustable Robust Optimization
We consider the problem of designing piecewise affine policies for two-stage adjustable robust linear optimization problems under right-hand side uncertainty. It is well known that a piecewise affine policy is optimal although the number of pieces can be exponentially large. A significant challenge in designing a practical piecewise affine policy is constructing good pieces of the uncertainty s...
متن کاملStrong Probabilistic Planning
We consider the problem of synthesizing policies, in domains where actions have probabilistic effects, that are optimal in the expected-case among the optimal worst-case strong policies. Thus we combine features from nondeterministic and probabilistic planning in a single framework. We present an algorithm that combines dynamic programming and model checking techniques to find plans satisfying ...
متن کاملOptimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures
This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017